5 research outputs found

    Gene Evaluation Algorithm for Reconfiguration of Medium and Large Size Photovoltaic Arrays Exhibiting Non-Uniform Aging

    Get PDF
    Aging is known to exert various non-uniform effects on photovoltaic (PV) modules within a PV array that consequently can result in non-uniform operational parameters affecting the individual PV modules, leading to a variable power output of the overall PV array. This study presents an algorithm for optimising the configuration of a PV array within which different PV modules are subject to non-uniform aging processes. The PV array reconfiguration approach suggests maximising power generation across non-uniformly aged PV arrays by merely repositioning, rather than replacing, the PV modules, thereby keeping maintenance costs to a minimum. Such a reconfiguration strategy demands data input on the PV module electrical parameters so that optimal reconfiguration arrangements can be selected. The algorithm repetitively sorts the PV modules according to a hierarchical pattern to minimise the impact of module mismatch arising due to non-uniform aging of panels across the array. Computer modelling and analysis have been performed to assess the efficacy of the suggested approach for a variety of dimensions of randomly non-uniformly aged PV arrays (e.g., 5 Ă— 5 and 7 Ă— 20 PV arrays) using MATLAB. The results demonstrate that enhanced power output is possible from a non-uniformly aged PV array and that this can be applied to a PV array of any size.</jats:p

    Fusion insights from ultrasonic and thermographic inspections for impact damage analysis

    Get PDF
    Low energy impact damage in composite materials may be more concerning than it appears visually, often requiring a detailed examination for accurate assessment to ensure safe and sustainable operation. Non-destructive testing (NDT) methods provide such inspection techniques, and in this paper, NDT-based fusion is explored for enhanced identification of defect size and location compared to indepdently using individual NDT methods separately. Three Carbon Fiber Reinforced Polymer (CFRP) specimens are examined, each with an impact damage of a given energy level, using pulsed thermography (PT) and phased array (PA) ultrasonic methods. Following the extraction of binary defect shapes from source images, a decision-level fusion approach is performed. The results indicate that combining ultrasonic and infrared thermography (IRT) inspections for CFRP composite materials is promising to achieve enhanced and improved detection traceability

    Multi-label classification algorithms for composite materials under infrared thermography testing

    Get PDF
    The key idea in this paper is to propose multi-labels classification algorithms to handle benchmark thermal datasets that are practically associated with different data characteristics and have only one health condition (damaged composite materials). A suggested alternative approach for extracting the statistical contents from the thermal images, is also employed. This approach offers comparable advantages for classifying multi-labelled datasets over more complex methods. Overall scored accuracy of different methods utilised in this approach showed that Random Forest algorithm has a clear higher performance over the others. This investigation is very unique as there has been no similar work published so far. Finally, the results demonstrated in this work provide a new perspective on the inspection of composite materials using Infrared Pulsed Thermography

    Diagnosis of composite materials in aircraft applications: towards a UAV active thermography inspection approach

    Get PDF
    Diagnosis and prognosis of failures for aircrafts’ integrity are some of the most important regular functionalities in complex and safety-critical aircraft structures. Further, development of failure diagnostic tools such as Non-Destructive Testing (NDT) techniques, in particular, for aircraft composite materials, has been seen as a subject of intensive research over the last decades. The need for diagnostic and prognostic tools for composite materials in aircraft applications rises and draws increasing attention. Yet, there is still an ongoing need for developing new failure diagnostic tools to respond to the rapid industrial development and complex machine design. Such tools will ease the early detection and isolation of developing defects and the prediction of damages propagation; thus allowing for early implementation of preventive maintenance and serve as a countermeasure to the potential of catastrophic failure. This paper provides a brief literature review of recent research on failure diagnosis of composite materials with an emphasis on the use of active thermography techniques in the aerospace industry. Furthermore, as the use of unmanned aerial vehicles (UAVs) for the remote inspection of large and/or difficult access areas has significantly grown in the last few years thanks to their flexibility of flight and to the possibility to carry one or several measuring sensors, the aim to use a UAV active thermography system for the inspection of large composite aeronautical structures in a continuous dynamic mode is proposed

    Automated Impact Damage Detection Technique for Composites Based on Thermographic Image Processing and Machine Learning Classification

    Get PDF
    Composite materials are one of the primary structural components in most current transportation applications, such as the aerospace industry. Composite material diagnostics is a promising area in the fight against structural damage in aircraft and spaceships. Detection and diagnostic technologies often provide analysts with a valuable and rapid mechanism to monitor the health and safety of composite materials. Although many attempts have been made to develop damage detection techniques and make operations more efficient, there is still a need to develop/improve existing methods. Pulsed thermography (PT) technology was used in this study to obtain healthy and defective data sets from custom-designed composite samples having similar dimensions but different thicknesses (1.6 and 3.8). Ten carbon fibre-reinforced plastic (CFRP) panels were tested. The samples were subjected to impact damage of various energy levels, ranging from 4 to 12 J. Two different methods have been applied to detect and classify the damage to the composite structures. The first applied method is the statistical analysis, where seven different statistical criteria have been calculated. The final results have proved the possibility of detecting the damaged area in most cases. However, for a more accurate detection technique, a machine learning method was applied to thermal images; specifically, the Cube Support Vector Machine (SVM) algorithm was selected. The prediction accuracy of the proposed classification models was calculated within a confusion matrix based on the dataset patterns representing the healthy and defective areas. The classification results ranged from 78.7% to 93.5%, and these promising results are paving the way to develop an automated model to efficiently evaluate the damage to composite materials based on the non-distractive testing (NDT) technique
    corecore